Series SSO

कोड नं. 56/1/MT

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न
 में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे
 और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

56/1/MT 1 P.T.O.

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न संख्या 23 मृल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित नहीं है ।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. पेंटों की परिक्षेपित प्रावस्था और परिक्षेपण माध्यम को लिखिए।
 Write the dispersed phase and dispersion medium of paints.

56/1/MT

- 2. कॉपर परमाणु में मूल अवस्था में d-ऑर्बिटलें पूरी तरह से भरी हुई हैं फिर भी यह एक संक्रमण तत्त्व है। क्यों ?
- 1

Copper atom has completely filled d-orbitals in its ground state but it is a transition element. Why?

 ${f 3.}$ निम्नलिखित युग्म में से कौन ${f S_N}2$ अभिक्रिया अधिक तीव्रता से करेगा :

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{Br}$$
 और $\mathrm{CH_3} - \mathrm{C} - \mathrm{CH_3}$ $|$ $|$ $|$ $|$ $|$ $|$ $|$ $|$ $|$

Which would undergo S_N^2 reaction faster in the following pair :

$$\rm CH_3-CH_2-Br$$
 and $\rm CH_3-CH_3-CH_3$ $\rm Br$

- 4. 1 मोल Al³+ के Al में अपचयन करने पर कितना आवेश (चार्ज) (फैराडे में) लगेगा ?
 How much charge in Faradays is required for the reduction of 1 mol of Al³+ to Al?
- 5. दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{O} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_3 \\ | \\ \operatorname{OH} \end{array}$$

Write the IUPAC name of the given compound:

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{O} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_3 \\ | \\ \operatorname{OH} \end{array}$$

56/1/MT 3

P.T.O.

1

. निम्नलिखित की संरचनाएँ आरेरि	व्रत कीजिए :
, , , , , , , , , , , , , , , , , , , ,	

2

- (i) $H_2S_2O_7$
- (ii) XeO₃

Write the structures of the following:

- $H_2S_2O_7$
- (ii) XeO₃
- 7. कॉम्प्लेक्स $[Co(NH_3)_5(CO_3)]Cl$ का आई.यू.पी.ए.सी. नाम लिखिए । इस कॉम्प्लेक्स द्वारा किस प्रकार की समावयवता दर्शाई जाती है ?

अथवा

आई.यू.पी.ए.सी. पद्धति का उपयोग करते हुए निम्नलिखित उपसहसंयोजन यौगिकों के सूत्र लिखिए:

2

2

2

- (i) टेट्राक्लोराइडोक्युप्रेट(II)
- (ii) पोटैशियम टेट्राहाइड्रॉक्सोज़िंकेट(II)

Write down the IUPAC name of the complex $[Co(NH_3)_5(CO_3)]Cl$. What type of isomerism is shown by this complex ?

OR

Using IUPAC norms write the formulae for the following coordination compounds:

- (i) Tetrachloridocuprate(II)
- (ii) Potassium tetrahydroxozincate(II)
- वाष्प दाब के आपेक्षिक अवनमन और विलेय के मोलर द्रव्यमान के बीच सम्बन्ध को व्युत्पन्न कीजिए ।

Derive the relationship between relative lowering of vapour pressure and molar mass of the solute.

4

56/1/MT

9. निम्नलिखित को व्यवस्थित कीजिए :

2

2

3

(i) क्षारीय सामर्थ्य के बढ़ते हुए क्रम में

$$C_6H_5 - NH_2$$
, $CH_3 - CH_2 - NH_2$, $C_6H_5 - NH - CH_3$

(ii) क्वथनांक के बढ़ते हुए क्रम में

$$C_2H_5 - OH$$
, $CH_3 - CH_2 - NH_2$, $CH_3 - NH - CH_3$

Arrange the following:

- (i) in increasing order of basic strength $C_6H_5 NH_2$, $CH_3 CH_2 NH_2$, $C_6H_5 NH CH_3$
- (ii) in increasing order of boiling point $C_2H_5-OH, \quad CH_3-CH_2-NH_2, \quad CH_3-NH-CH_3$
- 10. दर स्थिरांक (k) को परिभाषित कीजिए । निम्नलिखित के लिए दर स्थिरांक के मात्रक लिखिए :
 - (i) प्रथम कोटि अभिक्रिया
 - (ii) द्वितीय कोटि अभिक्रिया

Define rate constant (k). Write the unit of rate constant for the following:

- (i) First order reaction
- (ii) Second order reaction
- 11. निम्नलिखित पदों को परिभाषित कीजिए :
 - (i) **F**-सेंटर
 - (ii) p-टाइप अर्धचालक
 - (iii) फेरीचुम्बकत्व

Define the following terms:

- (i) F-centre
- (ii) p-type semiconductor
- (iii) Ferrimagnetism

56/1/MT 5 P.T.O.

12. जब तापमान 300 K से 320 K परिवर्तित होता है तो प्रथम कोटि की अभिक्रिया का दर स्थिरांक 2×10^{-2} से बढ़कर 8×10^{-2} हो जाता है । सि्क्रियण ऊर्जा (E_a) का परिकलन कीजिए ।

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

The rate constant of a first order reaction increases from 2×10^{-2} to 8×10^{-2} when the temperature changes from 300 K to 320 K. Calculate the energy of activation (E_a).

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

- 13. निम्नलिखित पदों को परिभाषित कीजिए:
 - (i) समांगी उत्प्रेरण
 - (ii) स्कंदन
 - (iii) मैक्रो-आण्विक कोलॉइडें

Define the following terms:

- (i) Homogeneous catalysis
- (ii) Coagulation
- (iii) Macromolecular colloids
- 14. (i) धातुओं के ज़ोन परिष्करण के पीछे जो सिद्धान्त है, उसका उल्लेख कीजिए।
 - (ii) स्वर्ण (गोल्ड) के निष्कर्षण में तनु NaCN की क्या भूमिका है ?
 - (iii) आयरन का कौन-सा रूप (फॉर्म) व्यापारिक आयरन का शुद्धतम रूप है ?
 - (i) Mention the principle behind the zone refining of metals.
 - (ii) What is the role of dilute NaCN in the extraction of gold?
 - (iii) Which form of iron is the purest form of commercial iron?

56/1/MT

3

3

15. 90 g बेन्ज़ीन में जब एक अवाष्पशील विलेय का 1.5 g घुलाया जाता है, तब बेन्ज़ीन का क्वथनांक 353.23 K से बढ़कर 353.93 K हो जाता है । विलेय का मोलर द्रव्यमान परिकलित कीजिए।

(बेन्ज़ीन का
$$K_b = 2.52 \text{ K kg mol}^{-1}$$
)

3

When 1.5 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point of benzene raised from 353.23 K to 353.93 K. Calculate the molar mass of the solute.

 $(K_b \text{ for benzene} = 2.52 \text{ K kg mol}^{-1})$

16. निम्नलिखित के लिए कारण दीजिए :

3

- (i) डाईनाइट्रोजन एक गैस है परन्तु फ़ॉस्फ़ोरस एक ठोस है।
- (ii) H_2O से H_2Te तक आबन्ध कोण घटता है ।
- (iii) हैलोजनों की अधिकतम ऋणात्मक इलेक्ट्रॉन प्राप्ति एन्थैल्पी होती है।

Give reasons for the following:

- (i) Dinitrogen is a gas but phosphorus is a solid.
- (ii) Bond angle decreases from H₂O to H₂Te.
- (iii) Halogens have the maximum negative electron gain enthalpy.
- 17. निम्नलिखित में प्रत्येक अभिक्रिया के मुख्य उत्पाद की संरचनाएँ लिखिए :

3

(i)
$$CH_3 - CH = CH_2 + H_2O \xrightarrow{H^+}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 + KOH$$
 एथेनॉल/ऊष्मा H Br

(iii)
$$\stackrel{\text{Br}}{ }$$
 + CH_3COCl $\stackrel{\text{नर्जलीय AlCl}_3}{ }$

56/1/MT

7

P.T.O.

Write the structure of the major product in each of the following reactions:

(i)
$$CH_3 - CH = CH_2 + H_2O \xrightarrow{H^+}$$

(ii)
$$CH_3 - CH_2 - CH - CH_3 + KOH$$
 ethanol/heat Br

18. निम्नलिखित के लिए कारण दीजिए :

- (a) p-नाइट्रोफ़ीनॉल अपेक्षाकृत o-नाइट्रोफ़ीनॉल से अधिक अम्लीय है ।
- (b) ईथरों में C-O-C आबन्ध कोण चतुष्फलकीय कोण (109°28') से थोड़ा बड़ा होता है।
- (c) $(CH_3)_3C Br$ जब $NaOCH_3$ से अभिक्रिया करता है तब एक ऐल्कीन देता है न कि एक ईथर ।

Give reasons for the following:

- (a) p-nitrophenol is more acidic than o-nitrophenol.
- (b) Bond angle C-O-C in ethers is slightly higher than the tetrahedral angle $(109^{\circ}28')$.
- (c) $(CH_3)_3C$ Br on reaction with NaOCH $_3$ gives an alkene instead of an ether.

19. निम्नलिखित रूपांतरण आप कैसे करेंगे :

- (i) ऐनिलीन का बेन्ज़ीन में
- (ii) एथेनेमाइड का मेथैनऐमीन में
- (iii) नाइट्रोबेन्ज़ीन का ऐनिलीन में

अथवा

56/1/MT 8

3

निम्नलिखित अभिकारकों के साथ जब $C_2H_5NH_2$ को उपचारित किया जाता है तब संबद्ध रासायनिक समीकरणों को लिखिए :

- (i) CH₃COCl/पिरिडीन
- (ii) $C_6H_5SO_2Cl$
- (iii) CHCl₃ + KOH

How do you convert the following:

- (i) Aniline to benzene
- (ii) Ethanamide to methanamine
- (iii) Nitrobenzene to aniline

OR

Write the chemical equations involved when ${\rm C_2H_5NH_2}$ is treated with the following reagents :

- (i) CH₃COCl/pyridine
- ${\rm (ii)} \quad \ \, {\rm C_6H_5SO_2Cl}$
- (iii) $CHCl_3 + KOH$
- 20. निम्नलिखित बहुलकों के एकलकों के नाम और उनकी संरचनाएँ लिखिए :
 - (i) बुना-N
 - (ii) बेकेलाइट
 - (iii) टेफ़्लॉन

56/1/MT 9 P.T.O.

Write the names and structures of the monomers of the following polymers:

- (i) Buna-N
- (ii) Bakelite
- (iii) Teflon
- **21.** (i) जब D-ग्लूकोस Br_2 जल से अभिक्रिया करता है तो प्राप्त उत्पाद को लिखिए।
 - (ii) प्रोटीनों में किस प्रकार का लिंकेज उपस्थित होता है ?
 - (iii) DNA और RNA के बीच एक अंतर को लिखिए।
 - (i) Write the product obtained when D-glucose reacts with Br₂ water.
 - (ii) What type of linkage is present in proteins?
 - (iii) Write one difference between DNA and RNA.
- 22. (a) निम्नलिखित कॉम्प्लेक्सों में संकरण और उनका आकार लिखिए :
 - (i) $[\text{Co(NH}_3)_6]^{3+}$
 - (ii) $[NiCl_4]^{2-}$

(परमाणु क्रमांक : Co = 27, Ni = 28)

- (b) NH_3 और 'en' में कौन-सा लिगैन्ड धातु के साथ अधिक स्थायी कॉम्प्लेक्स बनाता है और क्यों ?
- (a) Write the hybridization and shape of the following complexes:
 - (i) $[\text{Co(NH}_3)_6]^{3+}$
 - (ii) $[NiCl_{4}]^{2-}$

(Atomic number : Co = 27, Ni = 28)

(b) Out of NH₃ and 'en', which ligand forms more stable complex with metal and why?

56/1/MT 10

3

23. जवान बच्चों में मधुमेह और अवसाद (उदासी) की बढ़ती संख्या को देखकर, एक प्रसिद्ध स्कूल के प्रिंसिपल श्री चोपड़ा ने एक सेमिनार का आयोजन किया जिसमें अन्य प्रिंसिपलों और बच्चों के माता-पिताओं को आमंत्रित किया । यह निर्णय लिया गया कि स्कूलों में सड़े हुए खाने की वस्तुएँ बंद की जाएँ और स्वास्थ्यवर्धक वस्तुएँ जैसे सूप, लस्सी, दूध, आदि उपलब्ध कराई जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकाल की ऐसेम्बली के समय बच्चों को आधा घंटे का शारीरिक व्यायाम अनिवार्य रूप से कराया जाए । छः माह के पश्चात्, श्री चोपड़ा ने अधिकतर स्कूलों में फिर स्वास्थ्य परीक्षण कराया और बच्चों के स्वास्थ्य में अनुपम सुधार पाया गया ।

उपर्युक्त विवरण को पढ़कर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री चोपड़ा द्वारा किन मूल्यों (कम-से-कम दो) को प्रदर्शित किया गया ?
- (ii) एक विद्यार्थी के रूप में, आप इस विषय में कैसे जागरूकता फैलाएँगे ?
- (iii) बिना डॉक्टर की सलाह प्रति-अवसादक इंग्स का सेवन क्यों नहीं करना चाहिए ?

4

(iv) कृत्रिम मधुकारी पदार्थों के दो उदाहरण दीजिए ।

Seeing the growing cases of diabetes and depression among young children, Mr. Chopra, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Chopra conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Chopra?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) Why should antidepressant drugs not be taken without consulting a doctor?
- (iv) Give two examples of artificial sweeteners.

56/1/MT 11 P.T.O.

24. निम्नलिखित सेल के लिए विद्युत्-वाहक बल (ई.एम.एफ.) और ΔG का परिकलन कीजिए :

$$Ni(s) | Ni^{2+}(0.01 \text{ M}) | | Ag^{+}(0.001 \text{ M}) | Ag(s)$$

दिया गया है : $E^0_{(Ni^{2+}/Ni)}$ = -0.25 V, $E^0_{(Ag^+/Ag)}$ = +0.80 V

अथवा

- (a) NaCl के 0.1 mol L^{-1} विलयन की चालकता $1.06 \times 10^{-2} \text{ S cm}^{-1}$ है । इसकी मोलर चालकता और वियोजन-मात्रा (α) को परिकलित कीजिए । दिया गया है $\lambda^0(\text{Na}^+) = 50.1 \text{ S cm}^2 \text{ mol}^{-1}$ और $\lambda^0(\text{Cl}^-) = 76.5 \text{ S cm}^2 \text{ mol}^{-1}$.
- (b) प्राथमिक और द्वितीयक बैटरी के बीच क्या अंतर होता है ? प्रत्येक प्रकार का एक-एक उदाहरण दीजिए।

Calculate e.m.f. and ΔG for the following cell:

$$Ni(s) | Ni^{2+}(0.01 \text{ M}) | | Ag^{+}(0.001 \text{ M}) | Ag(s)$$

Given: $E^{0}_{(Ni^{2+}/Ni)} = -0.25 \text{ V}, \ E^{0}_{(Ag^{+}/Ag)} = +0.80 \text{ V}$

OR

- (a) The conductivity of $0.1 \text{ mol } L^{-1}$ solution of NaCl is $1.06 \times 10^{-2} \text{ S cm}^{-1}$. Calculate its molar conductivity and degree of dissociation (a). Given $\lambda^0(\text{Na}^+) = 50.1 \text{ S cm}^2 \text{ mol}^{-1}$ and $\lambda^0(\text{Cl}^-) = 76.5 \text{ S cm}^2 \text{ mol}^{-1}$.
- (b) What is the difference between primary battery and secondary battery? Give one example of each type.
- 25. (a) निम्नलिखित को कारण देते हुए स्पष्ट कीजिए :
 - (i) Ce^{4+} जलीय विलयन में एक प्रबल उपचायक है ।
 - (ii) संक्रमण धातुओं की परमाण्विकरण की एन्थैल्पी उच्च होती है।
 - (iii) 3d श्रेणी में मैंगनीज़ (Mn) सर्वाधिक उपचयन अवस्थाएँ दर्शाता है।
 - (b) निम्नलिखित समीकरणों को पूर्ण कीजिए :
 - (i) $2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow$
 - (ii) $\operatorname{Cr_2O_7^{2-}} + 14 \operatorname{H}^+ + 6 \operatorname{Fe}^{2+} \rightarrow$

अथवा

56/1/MT 12

5

5

- (a) निम्नलिखित को कारण सहित समझाइए:
 - (i) संक्रमण धात्एँ रंगीन यौगिक बनाती हैं।
 - (ii) Cr^{2+} एक प्रबल अपचायक है।
 - (iii) ऐक्टिनॉयडें अपने इलेक्टॉनिक विन्यास में अनियमितताएँ दर्शाते हैं।
- (b) लैन्थैनॉयड संकुचन को परिभाषित कीजिए । लैन्थैनॉयडों की सामान्य उपचयन अवस्था लिखिए ।

5

- (a) Account for the following:
 - (i) Ce⁴⁺ is a strong oxidizing agent in aqueous solution.
 - (ii) Transition metals have high enthalpy of atomization.
 - (iii) Mn shows maximum number of oxidation states in 3d series.
- (b) Complete the following equations:
 - $(i) \hspace{0.5cm} 2\hspace{0.1cm}Mn\hspace{0.02cm}O_{4}^{-}\hspace{0.1cm} + 6\hspace{0.1cm}H^{+} \hspace{0.1cm} + \hspace{0.1cm}5\hspace{0.1cm}N\hspace{0.02cm}O_{2}^{-}\hspace{0.1cm} \rightarrow \hspace{0.1cm}$
 - (ii) $\operatorname{Cr_2O_7^{2-}} + 14 \operatorname{H^+} + 6 \operatorname{Fe}^{2+} \rightarrow$

OR

- (a) Account for the following:
 - (i) Transition metals form coloured compounds.
 - (ii) Cr^{2+} is a strong reducing agent.
 - (iii) Actinoids show irregularities in their electronic configurations.
- (b) Define lanthanoid contraction. Write the common oxidation state of lanthanoids.

56/1/MT 13 P.T.O.

26. (a) निम्नलिखित अभिक्रियाओं में A, B, C और D की संरचनाएँ लिखिए :

- (b) निम्नलिखित के बीच अंतर कीजिए:
 - (i) $C_6H_5-COCH_3$ और $C_6H_5-COCH_2CH_3$ में
 - (ii) बेन्ज़ोइक अम्ल और फ़ीनॉल में
- (c) 2-हाइड्रॉक्सीबेन्ज़ैल्डिहाइड की संरचना लिखिए।

अथवा

- (a) जब एथेनेल ($CH_3 CHO$) निम्नलिखित अभिकारकों के साथ अभिक्रिया करता है, तो प्राप्त मुख्य उत्पादों की संरचनाओं को लिखिए :
 - (i) HCN
 - $(ii) \quad H_2N NH_2/H^+$
 - (iii) LiAlH₄
- (b) नाभिकस्नेही संकलन अभिक्रिया के प्रति उनकी बढ़ती हुई अभिक्रियाशीलता के क्रम में निम्नलिखित को व्यवस्थित कीजिए :

$$\mathrm{C_6H_5COCH_3},\ \mathrm{CH_3-CHO},\ \mathrm{CH_3-CO-CH_3}$$

(c) निम्नलिखित यौगिक युग्म के बीच अंतर करने के लिए एक सामान्य रासायनिक जाँच दीजिए:

CH₃CH₂CHO और CH₃CHO

5

5

56/1/MT

(a) Write the structures of A, B, C and D in the following reactions:

$$C_{6}H_{5}COCl \xrightarrow{H_{2}/Pd - BaSO_{4}} A \xrightarrow{conc. NaOH} B + C$$

$$CH_{3}MgBr/H_{3}O^{+}$$

- (b) Distinguish between the following:
 - (i) $C_6H_5 COCH_3$ and $C_6H_5 COCH_2CH_3$
 - (ii) Benzoic acid and Phenol
- (c) Write the structure of 2-hydroxybenzaldehyde.

OR

- (a) Write the structures of the main products when ethanal $({\rm CH_3-CHO})$ reacts with the following reagents :
 - (i) HCN
 - $(ii) \quad H_2N-NH_2\!/\!H^+$
 - (iii) LiAlH₄
- (b) Arrange the following in the increasing order of their reactivity towards nucleophilic addition reaction:

$$C_6H_5COCH_3$$
, $CH_3 - CHO$, $CH_3 - CO - CH_3$

(c) Give a simple chemical test to distinguish between the following pair of compounds:

56/1/MT

Chemistry-Marking Scheme 2015

Chennai- 56/1/MT

Q.N	Value points	Marks
О	•	
		1
1	Dispersed phase – Solid, Dispersion medium – Liquid.	1
2	Due to incompletely filled d-orbitals in $+2$ oxidation state (i.e., in	1
2	Cu ²⁺ state.)	1
3	CH ₃ -CH ₂ -Br.	1
4	3 Faraday / 3F	1
5	1-methoxypropan-2-ol.	1
6	i) (ii) (xe)	1,1
7	Pentaamminecarbonatocobalt(III) chloride.	1
	Ionization isomerism	1
	OR	
7	(i) $[CuCl_4]^{2-}$ (ii) $K_2[Zn(OH)_4]$	1,1
8	As per Raoult's law $p_A = x_A p_A^{\circ}$	
	$P_{A} = p_{A}^{o}(1 - x_{B}) = p_{A}^{o} - p_{A}^{o}x_{B}$	
	$(p_A^0 - p_A) / p_A^0 = x_B$	
	$\Delta p / p_A{}^o = X_B = w_B M_A / M_B w_A$ $w_B M_A$	
	MB =	2
	$(\Delta p / p_A^o)$ wa	2
9	(i) C_6H_5 -NH ₂ $< C_6H_5$ -NH-CH ₃ $< CH_3$ -CH ₂ -NH ₂ .	1
	(ii) CH_3 -NH- CH_3 < CH_3 -CH ₂ -NH ₂ < C_2H_5 -OH.	1
10	Rate constant is the proportionality constant that relates rate of	
	reaction with concentration of reactants / Rate of the reaction when	1
	molar concentration of the reactant becomes unity.	
	(i) Unit: time ⁻¹ or s ⁻¹ .	1/2
	(ii) Unit: L mol ⁻¹ time ⁻¹ or M ⁻¹ s ⁻¹ .	1/2
11	(i) Anion vacancies occupied by free electrons in alkali metal halides,	1
	(when they have metal excess defects) are called F-centre.	
1	(ii) When Si or Ge is doned with a trivalent impurity then electron	1

	substance leading to small net permanent magnetic moment.	
12	$\log (k_2/k_1) = (E_a/2.303R) (T_2-T_1)/T_1T_2$	1
	$\log \left[(8x10^{-2})/(2x10^{-2}) \right] = 20 \; E_a \; / \; 2.303x8.314x300x320$	1
	$E_a = [log(4)x2.303x8.314x300x320] / 20$	
	$E_a = 55336.8 \text{ J mol}^{-1} = 55.34 \text{ kJ mol}^{-1}.$	1
13	(i) In a catalysis process when the reactants and catalyst occur in same phase, the process is called homogeneous catalysis.	1
	(ii) The process of settling of colloidal particles forming precipitate is called coagulation.	1
	(iii) Polymeric substances or macromolecules when added to suitable solvents form solutions in which the size of the macromolecules may be in colloidal range. Such colloids are known as macromolecular colloids.	1
14	(i)The impurities are more soluble in the melt of metal than in solid state of the metal.	1
	(ii) As leaching agent, thereby oxidizing the metal into soluble cyanocomplex $/ [Au(CN)_2]^T$.	1
	(iii) Wrought iron	
1.5	AT I	1
15	$\Delta T_b = K_b m$	
	$\Delta T_b = K_b (W_B \times 1000 / M_B \times W_A)$	1
	$353.93-353.23=2.52 \times 1.5 \times 1000 / M_B \times 90$	1
	$M_B = (2.52 \text{ x } 1.5 \text{ x } 1000) / (0.7 \text{ x } 90)$	
	$= 60.0 \text{ g mol}^{-1}.$	1
16	(i) Because of $p\pi$ - $p\pi$ multiple bonding in nitrogen (diatomic) which is absent in phosphorus (polymeric / polyatomic).	1
	(ii) Because of decrease in tendency of $\rm sp^3$ hybridisation from $\rm H_2O$ to $\rm H_2Te$.	1
1		
	(iii) Due to their smallest atomic sizes in respective periods, / or due to the fact that they have only one electron less than the next noble gas	1
17	to the fact that they have only one electron less than the next noble gas configuration.	1
17	to the fact that they have only one electron less than the next noble gas configuration. (i) CH ₃ - CH(OH)-CH ₃	1
17	to the fact that they have only one electron less than the next noble gas configuration.	

	the l.p-l.p electronic repulsions.	
	(iii) CH ₃ ONa is not only nucleophile but also stronger base, thereby	1
	leads to elimination reaction of the alkyl halide.	1
19	(i) $C_6H_5NH_2$ NaNO ₂ + HCl / 278K $C_6H_5N_2Cl$ $H_3PO_2+H_2O$ C_6H_6	1
	(ii) CH_3 - $CONH_2$ $\underline{KOH + Br_2}$ CH_3NH_2	1
	(iii) $C_6H_5NO_2$ Sn+HCl or Fe+HCl $C_6H_5NH_2$	1
	OR	1
19	(i) C ₂ H ₅ NH ₂ + CH ₃ COCl <u>pyridine</u> C ₂ H ₅ -NHCOCH ₃ + HCl	1
	(ii) $C_2H_5NH_2 + C_6H_5SO_2C1 \longrightarrow C_2H_5NH - O_2SC_6H_5 + HC1$	1
	(iii) $C_2H_5NH_2 + CHCl_3 + KOH \longrightarrow C_2H_5NC + KCl + H_2O$	1
20	(i) But-1,3-diene, Acrylonitrile; CH ₂ =CH-CH=CH ₂ , CH ₂ =CH-CN	1/2 + 1/2
	(ii) Phenol, Formaldehyde; C ₆ H ₅ OH, HCHO	1/2 + 1/2
	(iii) Tetrafluoroethylene; CF_2 = CF_2 (Note: half mark for name/s and half mark for structure/s)	1/2 + 1/2
21	(i) Gluconic acid / COOH-(CHOH) ₄ -CH ₂ OH	1
	(ii) Peptide linkage / -NH-CO- links	1
	(iii)	
	s.no DNA RNA	1
	1 Sugar is 2-deoxy ribose Sugar is ribose	
	2 Double helical structure Single stranded structure	
22	(a)(i) d ² sp ³ ; Octahedral	$\frac{1}{2} + \frac{1}{2}$
		/2 1 /2
	(ii) sp ³ ; Tetrahedral	1/2 + 1/2
	(b)'en', forms chelate.	$\frac{1}{2} + \frac{1}{2}$
23	(i) Social awareness ,Health conscious, Caring , empathy,	1/2 + 1/2
	concern .(or any other two values)	
	(ii) (ii) Cartoon display / street play/poster making (or any other correct answer)	1
		1
	(iii) Wrong choice and over dose may be harmful.	1/ 1/
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2

24	$E_{\text{Cell}} = (E_{\text{Ag}}^{\text{o}} - E_{\text{Ni}}^{\text{o}}) - (0.0591/\text{n}) \log[Ni^{2+}/(Ag^{+})^{2}]$	1
	$= (0.80 + 0.25) - 0.02955\log(10^{-2}/10^{-6})$	1
	= 1.05 - 0.0178 = 1.0322 V	1
	$\Delta G = -n F E_{cell}$	
	= - 2 x 96500 x 1.0322	1/ ₂ 1/ ₂
	$= -199214 \text{ J mol}^{-1} = -199.2 \text{ kJ mol}^{-1}$	1
	OR	
24	(a) Molar Conductivity (Λ_m) = 1000 K/C	17
24	$= (1000 \times 1.06 \times 10^{-2}) / 0.1$	1/ ₂ 1/ ₂
	$= 106 \text{ S cm}^{-2} \text{ mol}^{-1}.$	1
	Deg. of dissociation (α) = $\Lambda_{\rm m}/\Lambda_{\rm m}^0$	1/2
	= 106 / (50.1+76.5)	,,,
	= 0.8373 (b) Primary battery- non rechargeable whereas secondary battery is	1/ ₂ 1/ ₂ , 1/ ₂
	chargeable. Eg: primary battery-dry cell, mercury cell(any one), secondary battery- lead storage battery, Ni-Cd battery(any one) (or any other correct example)	1/2 , 1/2
25	(a)	
	(i) Ce ⁴⁺ gets reverted to 3+ oxidation state in aqueous medium hence is a good oxidizing agent/ Ce is more stable in +3 oxidation state.	1
	(ii) Due to very strong metal-metal bonding (involving large no. of electrons of the d-orbitals)	1
	(iii) Mn has maximum no. of unpaired electrons in 3d-orbitals.	1
	(b)(i) $2MnO_4^- + 6H^+ + 5NO_2^- \longrightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	1
	(ii) $Cr_2O_7^{2-} + 14H^+ + 6 Fe^{2+} \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$	1
	OR	
25	(a) (i) Due to d-d transitions (involving absorption of energy in visible range) / unpaired electrons in d- orbitals.	1
	(ii) Because Cr is more stable in +3 oxidation state.	1
	(iii) Due to stability of 5f ⁰ 5f ⁷ 5f ¹⁴ / very small energy difference	

26	(a) A is C_6H_5CHO ; B & C/ C & B are $C_6H_5CH_2OH$ & C_6H_5COONa	½ x 4
	D is C ₆ H ₅ CH(OH)CH ₃	
	(b) (i) C_6H_5 -CO-CH $_3$ forms yellow coloured CHI $_3$ on heating with I $_2$ +KOH / NaOH but C_6H_5 -CO-CH $_2$ -CH $_3$ does not / equation form.	1
	(ii) With neutral FeCl ₃ , phenol gives violet coloration but benzoic acid does not. (any other suitable test).	1
	(с) СНО ОН	1
	OR	
26	(a) (i) CH ₃ CH(OH)CN (ii) CH ₃ CH=N-NH ₂ (iii) CH ₃ CH ₂ OH (b) C ₆ H ₅ -CO-CH ₃ < CH ₃ -CO-CH ₃ < CH ₃ -CHO	1 1 1
	(c) CH ₃ CHO gives yellow precipitate of CHI ₃ with I ₂ + KOH but CH ₃ CH ₂ CHO does not/ equation form	1

